

ROBOSIM GEOMETRY MODULE

by

RYAN SHELTON

B.S., Kansas State University, 2003

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2005

Approved by:

Major Professor
William H. Hsu, Ph.D.

ABSTRACT

The Geometry Module for RoboSim was made to fill the solid geometry needs of the

simulator. RoboSim is a 3-D environment simulator for robotic application testing. To

properly simulate environment objects, a robust collision detection package was required

that could accurately and efficiently provide precise movement for robots and other

objects. Although it was developed to fulfill a need in RoboSim, the geometry module

has been designed to be general enough to meet rendering and animation requirements

for future 3-D visualization environments. The geometry module is implemented with a

bounding volume hierarchy using axis-aligned and oriented bounding volumes.

Bounding volumes provide an efficient way to rule out non-collisions and find collisions

within certain bounds. Using the Geometry Module, RoboSim is now ready for

simulation with more complex robots, objects, and movements. The Geometry Module

provides all the necessary support for creating the realistic environments that will make

RoboSim an accurate simulator.

i

TABLE OF CONTENTS

Table of Contents………………………………………………………………………….. i

List of Figures…………………………………………………………………………….. ii

Chapter 1: Introduction…………………………………………………………………… 1

Chapter 2: Geometry Concepts…………………………………………………………… 4

 Collision Detection……………………………………………………………….. 4

 Spatial partitioning Trees…………………………………………………………..9

 Coldet – A Collision detection Library………………………………………….. 10

Chapter 3: Geometry Module Design and Implementation……………………………... 12

 Module Structure………………………………………………………………... 13

 Module Functions………………………………………………………………...14

 Data Objects……………………………………………………………………... 15

 Collision Detection……………………………………………………………… 17

 RoboSim Interface………………………………………………………………. 18

 Module Testing……………………..…………………………………………… 19

Chapter 4: Conclusion…………………………………………………………………… 22

Bibliography……………………………………………………………………………...24

Appendix 1: Module Class Diagrams…………………………………………………… 25

ii

LIST OF FIGURES

Figure 1.1. RoboSim Architecture……………………………………………………….. 2

Figure 2.1. Sphere Intersection Test……………………………………………………… 6

Figure 2.2. Axis Aligned Bounding Box Intersection Test………………………………. 7

Figure 3.1. Geometry Module Overview…………………………………………………13

Figure 3.2. Geometry Module Data Objects…………………………………………….. 16

Figure 3.3. The 2-D Geometry Viewer…………………………………………………...20

1

CHAPTER 1: Introduction

The geometry module is a solid geometry API that can be used for collision detection and

rendering. The module was created to fulfill a need in the RoboSim robotics simulation

group, but it is a stand-alone package that can be used for a variety of applications. The

module is designed to be flexible enough to use for real-time applications or high-

precision simulations. The API has multiple modes that allow support for different end

user needs. 3-D collision detection and ray casting are currently supported, but there are

possibilities for expansion to include rendering with ray tracing and physically realistic

movement.

RoboSim Overview

RoboSim is a software system for robot simulation developed at Kansas State University

to provide a test bed for multi-agent systems. The project was started over 2 years ago as

a collaborative effort by a group of professors and students. The system has progressed

through many versions, but still is lacking the accuracy needed to simulate real world

conditions. The RoboSim application exists as a collection of different modules that

communicate over TCP/IP sockets. This provides a concurrent system that allows the

application to run at a reasonable speed for more complex environments than a single

threaded system. The central component of RoboSim is the environment module, which

coordinates communication between all the modules. Previously, the environment was

responsible for more of the computations such as collision detection and robot

communication, but much of this has been off-loaded to other modules in the current

version.

2

Figure 1.1. RoboSim Module Architecture

Figure 1.1 shows the separate modules and how they communicate with the environment

module. The environment makes connections with all the other modules and handles

message passing. The geometry module handles the representation and movement of

objects as well as simulating sonar and laser range-finding devices. The robot module is

used to emulate hardware robots and run the application code. The communication

module provides a messaging system to allow robots to communicate with each other.

The viewer module contains viewing applications that display the current state of the

simulation. There is a simple 2-D viewer that shows a top-down view of the world and a

3-D viewer that has multiple camera angles and can show the world from a robot’s

3

perspective. The control panel contains controls for setting the simulation parameters. In

most simulations, only robots and the geometry are required to connect to the

environment module to start a simulation. The communication module is not required

unless the robots need the messaging system, and the simulation can run without a

control panel or viewer if only console output is desired.

Once the robots connect to the environment they can request various actions. Robot

actions include movement, sonar requests, and proximity sensors. The environment then

queries the geometry module to obtain the results of the actions based on the current state

of the world, returns those results to the robots, and updates the state of the viewer(s), if

any are connected. Current RoboSim environments are three-dimensional, but the each

robot’s movement is limited to a single plane. Since only horizontal movement is used,

full 3-D collision detection is not required at this point in the project. The geometry

package runs in a 2-D mode where objects are specified in three dimensions, but

movement calculations are done in two dimensions, which can greatly increase

efficiency.

4

CHAPTER 2: Geometric Concepts

The geometry module makes use of several geometric concepts that are used to

implement efficient collision detection and ray casting. First, there are the equations used

for object-to-object intersection testing. These provide ways to determine the actual

collisions between objects. Closely related to object-to-object testing is ray-to-object

testing. Determining the intersection point of a ray with an object is integral to finding

distances in the environment. To make all the operations execute in a timely manner, a

space-partitioning scheme has been used to quickly narrow the scene down to only those

objects that may be intersecting.

COLLISION DETECTION

Collision detection is an integral part of a believable simulated environment. Software

can only render 2-D polygons based on vertex coordinates, so collision detection is

required to give the illusion of solid objects. By determining when objects will collide

with other objects during a simulation or interactive session, object intersections can be

prevented that would be impossible with real-life objects. When an action will cause two

objects in a scene to collide, the collision detection part of the program must recognize

that a collision will occur and cause some kind of reaction that will prevent the objects

from overlapping in the environment (Ericson, 2005).

The main problem with collision detection is producing a system that can run in a timely

manner but still meets the application’s demands for accuracy. Since different

applications have different accuracy requirements, several ways to implement collision

5

detection have been developed over the years. All these implementations trade

computation time for geometric accuracy and have several features in common. A

widely used technique is to surround objects with simpler geometric shapes that are

known as bounding volumes. A bounding volume can be a sphere, a box, a cylinder, a

capsule, or any one of several other geometric volumes. Using bounding volumes

simplifies collision computation because they involve simpler intersection tests than the

actual object geometries. Bounding volumes usually enclose a larger volume than the

object so sometimes a collision may be detected incorrectly.

Spherical Bounding Volumes

The simplest type of collision detection uses spherical bounding volumes. Spheres are

the easiest to work with due to low memory requirements and simple intersection tests.

A single point in the environment and the radius define a sphere, so only four values

(radius, X coordinate, Y coordinate, Z coordinate) need to be stored to describe the

volume. Spheres are also symmetric along all axes, so no rotations are required for

intersection testing. Special considerations must be taken when determining a spherical

bounding volume for an object, so the sphere fits around the object as tightly as possible.

Even with tight fitting bounds, spheres will often encapsulate a much larger volume than

the object, which leads to many false collisions being detected. Because of this, spherical

bounding volumes are generally reserved for applications that use a large number of

spherical objects or objects that are moving fast enough that the false collisions will not

be noticeable to the user. Spherical volumes can also be used in groups to surround an

6

object. By having a collection of overlapping spheres be a bounding volume, you can

achieve a much tighter fit while only increasing the computation by a linear factor.

 boolean testIntersection(Sphere s1, Sphere s2) {

 double distance = sqrt(s1.center.x * s2.center.x +
 s1.center.y * s2.center.y +
 s1.center.z * s2.center.z);

 return distance <= s1.radius + s2.radius;

}

Figure 2.1. Sphere Intersection Test

As shown in figure 2.1, the intersection equation for spheres is quite simple. By checking

the distance between the centers with the sum of the radii, we can quickly determine if

the spheres will intersect at any point in 3-D space. This simplicity makes spheres a

highly desirable bounding volume from a computational standpoint.

Bounding Boxes

After spheres, boxes are next in the line of efficient bounding volumes. There are two

types of algorithms that use bounding boxes for intersection testing. Axis-aligned

bounding boxes (AABBs) are always aligned with the major axes, and oriented bounding

boxes (OBBs) can be rotated in the environment to provide closer fitting bounds for

objects (Ericson, 2005). A center point and three dimensions define AABBs. AABBs

are often a much better fit than spherical volumes, and the computation is only slightly

more complex.

7

 boolean testIntersection(AABB b1, AABB b2) {

 double xdiff = abs(b1.center.x – b2.center.x);
 double ydiff = abs(b1.center.y – b2.center.y);
 double zdiff = abs(b1.center.z – b2.center.z);

 return (xdiff <= (b1.width + b2.width)/2 &&
 ydiff <= (b1.height + b2.height)/2 &&
 zdiff <= (b1.length + b2.length)/2);

}

Figure 2.2. Axis Aligned Bounding Box Intersection Test

Figure 2.2 shows that finding AABB intersections is simply testing for separation along

the three major axes. Even though AABBs are simple to test for intersection, there is still

the issue of resizing the box during runtime if required. If the actual object is rotating in

the environment, the AABB will have to be recomputed so that its faces form the tightest

rectangular volume containing the object. This can become a problem in applications

with large numbers of rotating objects. To remove the problem of dynamic resizing,

oriented bounding boxes (OBBs) can be used. OBBs are bounding boxes that can be

arbitrarily rotated to match the alignment of the object. They also provide a tighter fit

than AABBs for a majority of objects. However, the computation for OBB intersection is

more complex than AABBs. The OBB intersection test must take into account all

possible orientations of both boxes. This creates fifteen possible distance tests to be

performed instead of the three for AABBs. However, it should be noted that either test

could return a false value when any one of the axes being tested is found to be separating

the two boxes. In fact, most OBB non-collisions are found in the first 6 tests along the

8

principal axes (Ericson, 2005). This makes the average test require less computation, but

any true collision will require all comparisons to be performed.

Other Bounding Volumes

There are a variety of other bounding volumes that are used for intersection testing such

as cylinders, capsules, cones, frustums, and general convex polyhedra. Discrete

orientation polytopes (DOPs) are a particular class of bounding volume formed by the

intersection of half-spaces (Ericson, 2005). The type of DOP is determined by how many

half-spaces are intersected to create the volume. For instance, 8-DOPs are 8-sided

volumes that provide a tighter fit than boxes and are usually the next best thing to testing

the actual geometry.

Bounding Volume Hierarchies

Bounding volumes may also be grouped into hierarchies to provide a very tight fitting

intersection testing while still using simple intersection tests. Generally, these hierarchies

are arranged in a tree structure with each layer being more fine-grained than the previous.

Any type of bounding volume can be used, but less computation is always better, so

spheres and boxes are the most desirable.

Polygonal Meshes

If the application requires completely accurate intersection testing, then the individual

polygons of an object can be tested against each other to find if objects collide. This

method provides no false collisions, but requires a large amount of computation. To

9

increase efficiency, polygons may be grouped and stored in a bounding volume hierarchy

made up of previously discussed objects to quickly determine non-collisions, but the

polygonal meshes of the specified objects must be compared to find true intersections.

Raycasting

Raycasting is a different type of collision detection that involves finding the point of

intersection between a ray and the closest object in the scene (Foley, et al., 1997).

Raycasting is often used for high-quality rendering of 3-D images, but it can be used for

simpler applications such as simulating sonar or other distance-measuring devices. When

used for rendering, the closest object is located and its color is calculated with an

illumination equation that uses the color information for the object and relevant light

sources. When used for distance measuring, only the point of intersection is needed, so

less computation is required.

SPATIAL PARTITIONING TREES

In software environments, especially ones with large amounts of static objects, spatial

partitioning trees may be used to divide the scene in such a way to minimize the number

of intersection tests that need to be preformed. By storing a scene in a tree structure,

large segments of the world can be eliminated quickly, which cuts out all the more

complex tests for the objects in the eliminated segments.

10

BSP Trees

Binary Space Partition (BSP) trees have been used quite successfully for both 2-D and 3-

D environments (Ericson, 2005). For example, Quake 3: Arena uses BSP trees for all of

its worlds. BSP trees work by dividing the world with a plane to create two partitions.

Then those two partitions are subdivided. This continues until the entire world is made

up of convex regions that are open space or solid objects. Another method is to

subdivide until each region contains only one object. When testing an object for

collisions, it is compared with the plane that divides the current region. Then the object

is compared with the sub-region that it is inside. If the object intersects the plane, then

both sub-regions are tested. BSP trees can require a large amount of pre-computation to

create the tree structure, but are very fast during runtime.

Quadtrees and Octrees

Octrees and quadtrees divide 3-D regions into eight and four equal parts, respectively.

By dividing space parallel to the major axes, this creates regions that are identical to

AABBs. This makes testing the regions easy and allows for the elimination of even

larger regions than a BSP tree in a single iteration. Quadtrees can be set up to partition

the entire space to regions that are completely filled or completely empty. This method

can produce a very large tree depending on the number and shapes of the objects in the

scene. Another method for creating quadtrees involves adding the objects to the tree and

dividing the tree to the point where only one object exists in each region. This method

results in a smaller tree and can be much faster when using objects with simple

geometries.

11

COLDET – A COLLISON DETECTION LIBRARY

Coldet is a collision detection library written by Amir Geva. It is a library written in C++

and freely available under the GNU public license. It allows for real-time collision

detection between complex polygon models. Coldet is interesting because it provides

100 percent accurate collision detection, while still producing results very quickly. In

models with 3000 to 4000 polygons, the worst case took six milliseconds, and the

average case took approximately 1 millisecond (Geva, 2000).

Coldet stores objects as a collection of triangles, then creates a bounding volume

hierarchy with bounding boxes. Individual triangles are placed inside of boxes to

minimize the number of triangle vs triangle intersection tests. Coldet supports the

intersection testing of spheres, boxes, rays, segments, and polygon models. It is designed

for use in 3-D game environments where very accurate collision detection is required.

Another nice feature of this library is the ability to set the level of desired computation.

The library can return the two triangles that intersect and the exact point of intersection,

or a timeout point can be set. When a timeout point is set, the computation is stopped at

that point, and the most accurate result at that point is returned.

12

CHAPTER 3: Geometry Module Design and Implementation

The geometry module was designed to be as flexible as possible while still maintaining a

simple interface for use with RoboSim and future applications. The main entry points

for the module were designed to be as general as possible to allow the application

freedom to produce any type of objects that it required and move them in any desired

way.

MODULE DESIGN

The core of module consists of a main geometry class that uses several types of data

objects to store the environment information. All the basic functionality is accessed

through this main class. This allows applications to create and populate new

environments, move objects, and determine distances. A number of geometric primitives

are supported, but users can also specify objects with arbitrary geometries via polygonal

meshes. The geometry module is based on a right-handed coordinate system where the Y-

axis is vertically aligned. All rotations are specified in degrees, and a positive rotation

corresponds to a counter-clockwise movement. Environments can be any size, but are

limited to a default size if the application does not specify one. All movement and

distance measures are specified in world units, so any conversions to different units must

be handled by the application. ArrayLists are used often for storage purposes.

ArrayLists are part of the standard Java library, and are used throughout RoboSim.

ArrayLists are quite desirable because they are dynamic structures that easy to use and

not as complex as Vectors (Sun Microsystems, 2002).

13

Figure 3.1. An overview of the geometry module class structure.

All of the environment objects are derived from the GeometryObject class as shown in

Figure 3.1. These objects are then stored in an ArrayList or the Quadtree, depending on

the object type. An object can be added to the world with or without checks for collisions

with existing objects. RoboSim environments are stored in static XML files that are

assumed to be correct, so RoboSim uses unchecked additions to ensure all objects are

created and to reduce the time for initializing the environment. The CollisionDetection

14

class consists of static methods for testing geometry objects for intersection with other

objects.

Geometry Functions

The functions for the geometry module are simplistic, but some are overloaded to give

the user choices as to how they want to use certain features of the module. (For a diagram

of all the functions in the module, please refer to Appendix A.) All the addition functions

take in a GeometryObject and return a Boolean value if the object was added

successfully. Objects being added to the module must be specified as moveable if the

application will need to move them during run-time. Due to the static nature of the

Quadtree structure, all stationary objects are placed in the Quadtree and all moveable

objects are placed in an ArrayList where they can be accessed quickly. All objects that

are moveable are referenced by a unique name for movement and sonar requests.

Movement functions include translations and rotations in object-relative and global

coordinates. RoboSim uses object-relative coordinates to request moves. The positive

X-axis is considered to be forward in a relative move; so all object-relative moves will be

rotated so the X-axis lines up with the actual forward direction of the object. When using

object-relative coordinates, the application doesn’t have to keep track of the previous

location to request moves and sonar requests.

15

The geometry module supports different levels of accuracy, so there are several different

types of algorithms used in collision detection. The simplest and fastest algorithms use

Axis-Aligned Bounding Boxes (AABBs) and the most precise test against individual

polygons. Since not all applications require three dimensions, the module has simplified

tests for 2-D movement. This provides increased efficiency by skipping unnecessary

rejection tests.

DATA OBJECTS

The most important part of the module is being able to accurately store the geometric

data for the objects in the scene. All objects are based on the base type GeometryObject,

but have attributes and operations unique to a particular type of object. This simplifies

collision detection, since the test intersection method can take in objects of the base type

GeometryObject so the exact object type does not need to be known before calling the

method.

16

Figure 3.2. Data Objects used in the geometry module.

As Figure 3.2 shows, there are 4 types of objects supported by the module: MeshObject,

CylinderObject, BoxObject, and ObjectGroup. The cylinder and box objects are both

primitives that just take a few parameters to create. A center point, width, height, and

length define a BoxObject. A cylinder only requires radius and height with a center

point. These two objects are all that is required for current RoboSim simulations, but the

module includes the two additional objects for use with future environments and different

applications. The MeshObject is a polygon mesh with an accompanying bounding

volume. Polygon meshes are formed from a list of vertices that are grouped into

17

quadrilateral polygons (quads). An application can assign a bounding volume to the

mesh during creation or a default bounding box will be created for it. The class uses the

maximum values of all the vertices in the polygon mesh to create the default bounding

box. The last object, ObjectGroup, is used for creating complex objects or bounding

volume hierarchies. ObjectGroup contains a bounding volume, which may be specified

by the user. If a bounding volume is defined, it will be checked for collisions before any

of the objects in the group.

COLLISON DETECTION

The CollisionDetection class was designed to be as simple as possible. The class is static

with only two public methods. One method is for object-object intersection testing and

the other is for ray-object intersections. These methods determine what type of object is

passed in and then call the corresponding private function. This makes it very simple for

testing collision of arbitrary objects, because the type of object being tested against is not

required. Most of the object-object intersection tests are set up with multiple sets of

rejection tests. As soon as an object fails one of the rejection tests, the method will return

false to signify a non-collision. If none of the tests fail, then the objects are intersecting

and true is returned. The ray-object methods are slightly different. Raycasting is

concerned with the nearest point of intersection, not just if an intersection exists. The

raycasting methods determine the exact points of intersection and will return the distance

from the start of the ray to the nearest point of intersection with the object.

18

ROBOSIM INTERFACE

The geometry module connects to the RoboSim environment with the GeometryClient

class that creates a TCP/IP socket connection. RoboSim sends messages over the socket

to create the objects in the world, move existing objects, and request distance

calculations. After receiving a message from the environment module of Robosim, the

GeometryClient sends the commands to the main Geometry class and then sends any

results back on the same socket. There are three message sequences that occur during the

running of a RoboSim simulation.

The first sequence sends an InitBundle from the environment module to the

GeometryClient. An InitBundle is a serialized message that holds a list of Geometry

objects to be added to the world. The GeometryClient takes all the objects out of the

InitBundle and adds them all using the add method in Geometry. In RoboSim

environments, objects are always added successfully, so no results are sent back to the

environment.

The second sequence consists of movement requests. The environment module specifies

move requests in a MoveBundle. A move bundle is another serialized object that

contains a group of moves. Each move consists of the name of the object to be moved,

and the relative coordinates it wants to move to. The GeometryClient receives these

move requests and attempts the moves in Geometry. The environment gets the results of

the moves via a second MoveBundle that is created and sent by the GeometryClient.

This second move bundle contains the moves that were allowed by the geometry module.

19

The third message sequence involves requesting and receiving distance measures. In

RoboSim, the distance measures simulate sonar; so all requests are given in object-

relative coordinates. A SonarRequestBundle consists of some number of sonar requests,

which are defined by an object name, an x offset, and a z offset (the y offset is always 0,

as robots are assumed to be horizontal.) The GeometryClient queries the Geometry for

the distances and places them into a DistanceBundle that is sent back to the environment

module.

MODULE TESTING

To ensure the proper operation of the Geometry Module, testing was performed on the

module as a whole and on individual functions. Functions were tested with a small

application that creates a specific environment and moves an object. Object collisions

were tested for accuracy in additions and move attempts, and sonar requests were verified

with known values. Once the functions were operating properly, the interface to

RoboSim was tested for accuracy and data consistency.

The Quadtree was tested for both accuracy and efficiency. A testing class was set up

with a number of objects that were added to the Quadtree. This testing class was also

instrumented to measure the time it took to perform various operations. This testing class

was set up to sequentially add a specified amount of simple objects. The test used

verified additions, so each new object was tested against the existing object for

intersections. With environments of 1000 objects or less, the Quadtree was up to 4 times

20

faster than using an ArrayList structure, but when the number of objects were increased

to 10,000 objects, the Quadtree performed up to sixty-seven times more efficiently.

Figure 3.3. The 2-D Geometry Viewer

The geometry module has a 2-D viewer that can be used to display the world from a top-

down perspective. The viewer, displayed in figure 3.3, is based on the design of the 2-D

viewer included in the RoboSim module. By running both viewers in the same

simulations, the state of the world was verified to be consistent throughout RoboSim.

The world shown in figure 3.3 was used in the middle stages of testing to simulate

21

RoboSim environments. Initially, there were problems with objects not being added to

the Geometry module. It was discovered that the specified objects were overlapping, so

the module was not allowing them into the scene. To correct this, a new type of object

addition was added that allowed for overlapping walls. The map shown in the figure was

used to test if overlapping object were added correctly to the geometry module.

Distance finding was tested with and without connecting to the RoboSim environment.

The initial testing was done with a simple application that created a room of a known size

and requested sonar measurements in various directions. The distances returned were

compared to values calculated by hand. Once the sonar was returning correct distances, it

was tested with the RoboSim environment. On the first run, the values obtained from

environment were much smaller than expected. This was due to a unit mismatch

between the modules. RoboSim was specifying requests in radians, but the Geometry

Module was expecting degrees. The proper conversions were added and the values

between the environment and geometry were verified to be accurate and consistent.

22

Chapter 4: Conclusion

From a technical standpoint, current RoboSim applications gain almost negligible benefit

from the addition of the Geometry Module, but the main purpose of the geometry module

is to provide for the future benefit of RoboSim and other applications. The Geometry

module meets this purpose by providing the capabilities for more complex robots and

environments. The quadtree structure that partitions the environment provides an

efficient way to store and test against larger and more complex geometries. This module

allows for RoboSim to take a large step towards becoming a realistic environment

simulator.

FUTURE WORK

While the geometry package provides a robust basis for providing collision detection for

arbitrary geometries, it is essentially designed to meet the needs of RoboSim. The

module design would not be as efficient for 3-D applications that had a large degree of

vertical movement or environments with a very large number of moveable objects. The

module is also static in the sense that it has no reactive physics. A physics model that

supported inertia and bouncing objects would greatly increase the usability of the

module. A realistic physics model would allow for simulations with larger timesteps and

off-load some of the movement calculations from the application.

The Geometry module could also be extended to include a rendering engine if color and

material attributes were added to GeometryObject. The module already supports

23

raycasting for range-finding purposes, so extending it to create ray-traced images would

be a reasonably simple process. If desired, the module could be further extended to

support light sources and textured surfaces.

24

BIBLIOGRAPHY

Angel, Edward. (2003). Interactive Computer Graphics : a Top-Down Approach with

OpenGL. (3rd ed.). Boston: Addison Wesley.

Berg, de Mark. Krevald, Marc Van. Overmars, Mark. Schwarzkopf, Otfried. (2000).

Computational Geometry. (2nd ed.). Springer-Verlag.

EppStein, David. (2005). Geometry in Action: Quadtrees. Retrieved Feb 20, 2005, from

http://www.ics.uci.edu/~eppstein/gina/quadtree.html

Foley, J.D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1997). Computer Graphics:

Principles and Practice. (2nd ed.). Boston: Addison-Wesley.

Gargantini, Irene. (1982). An Effective Way to Represent Quadtrees. Comunications of

the ACM ’82 25:12. p 905-910.

Geva, Amir. (2000). coldet – Free 3-D collision detection library. Retrieved May 3,

2005, from http://photoneffect.com/coldet/

Gilbert, Chris. (n.d). “Lesson #30: Collision Detection” Retreived Feb 20, 2005, from

http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30

Harmon, Scott. (2004). Co-operative Robotics Simulator – Environment Simulator.

Master’s report, Kansas State University, Manhattan, Kansas.

Sun MicroSystems. (2002). Java 3-D 1.3 API Specification. Retrieved Feb 20, 2005,

from http://java.sun.com/products/java-media/3-D/forDevelopers/J3-D_1_3_API/
j3dapi/ index.html

25

APPENDIX A: Module Class Diagrams

Main Classes……….……………………………………………………………………. 26

Geometry Object Classes………………………………………………………………... 27

Other Data Classes………………………………………………………………………. 28

26

Main Classes

27

Geometry Objects

28

Other Data Objects

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1240
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1240
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1240
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF0041004100410049002000530065007400740069006e006700730020002d0020006100730020006f00660020004d0061007900200032003000300034>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

